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Abstract

The present paper evaluates the soiling losses of a 3.25-MW photovoltaic

(PV) system installed in central Chile, 200 km north of Santiago, and analyzes the

nonuniform soiling deposition between the various strings for a period of 3 years. A

robust methodology is developed to extract, in the most systematic way, 142 reliable

soiling profiles from the 256 PV power time series recorded on site. It is found that,

if unmitigated, soiling would reduce the annual DC energy generation by 8%, with a

factor of 2� between the losses of the most and least affected strings. Most of the

losses are registered on the edges of the plant, closer to traffic and unpaved roads.

The most soiling intense months are in summer, result of the infrequent rainfalls and

of the high concentrations of suspended particles that characterize this season. The

revenues and the costs of different manual cleaning frequencies are evaluated and

compared to identify the optimal soiling mitigation strategy for this site. Three

cleanings per year are found to return the highest profits for the economic conditions

considered in this study. However, a sensitivity analysis shows how different cleaning

costs and electricity prices would affect the soiling mitigation strategy. In addition, in

light of the nonuniform soiling deposition distribution, the possibility of cleaning only

selected strings rather than the full PV plant is discussed.
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1 | INTRODUCTION

Soiling consists of the accumulation of dust and dirt on the surface of

photovoltaic (PV) modules and causes significant energy and eco-

nomic losses to PV systems worldwide. A recent investigation found

soiling responsible for average energy yield losses in between 4% and

5% and for yearly missed revenues of at least €3 billion globally.1

Because of this tangible impact and driven by the increasing deploy-

ment of new PV capacity in high insolation and high soiling regions,

the number of publications on soiling has risen exponentially in the

last decade.2,3 Differently from other PV reliability issues, soiling is

generally reversible and can be mitigated through an adequate and

site-specific cleaning schedule. In this light, several models have been

proposed in literature to optimize the operating and maintenance

(O&M) actions, minimizing the soiling losses and, at the same time,

limiting the mitigation costs.4–7 However, these studies on soiling

economics and cleaning optimization have not taken into account that

soiling can deposit at different rates over large PV systems.8
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System-level soiling nonuniformity is a known but still relatively

unexplored issue, which causes an uneven distribution of soiling

between the various strings of the same site.8–11 In order to identify

nonuniform soiling, the IEC 61724-1 standard recommends more than

one soiling measurement for sites ≥5 MW expecting soiling losses

≥2%.12 Factors >2� were found between the soiling deposition rates

of modules of the same PV sites in California.9 Losses varying

between 5% and 11% were shown for another Californian site.11 In

order to improve the understanding of soiling deposition over large

PV systems, a study10 investigated and mapped the wind patterns for

different rows of PV modules of a PV facility in Nevada, taking also

into account the effect of the wind direction. Despite all these

findings, the possibility of cleaning only selected strings of a PV

system depending on the soiling distribution has not been yet

addressed in literature.1

The present work analyzes the performance and the soiling losses

of a utility-scale 3.25-MW PV system in Chile. The effects of non-

uniform soiling distribution across the various strings of the PV sys-

tems, an issue expected to increasingly affect plants worldwide given

also the growing share of utility-scale PV systems,13 are specifically

investigated. This is made possible through the analysis of the soiling

profiles of the 256 pairs of strings of the system, which are indepen-

dently and systematically studied. This represents the largest pool of

data on soiling measured within the same PV site. The results of this

analysis are used to assess revenues and profits of different cleaning

strategies and to evaluate the profits of cleaning each individual

string. The possibility of cleaning only highly soiled strings rather than

the full PV plant to improve the soiling mitigation profits is also evalu-

ated. In addition, the paper provides novel information on the PV per-

formance in Chile, a country with a high solar potential and where

significant investments are being made but that is exposed, at the

same time, to severe soiling risks.

The paper is structured as follows. A brief overview on the sta-

tus of PV and on the literature available on soiling in Chile is given in

Section 2. Section 3 presents the characteristics of the site where

the system is installed (Section 3.1) and the methodologies employed

to analyze the PV performance data (Section 3.2), to extract and

model the soiling loss profiles (Sections 3.3 and 3.4), and to evaluate

the profitability of various cleaning frequency scenarios (Section 3.5).

The analysis of the soiling losses is presented in Section 4. Last, the

results of the cleaning optimization are discussed in Section 5. Addi-

tional figures are available in the Supporting Information to back the

decisions made in the soiling extraction process and to help under-

standing some of the results. These are referenced in the text as

“Figure S.”

2 | PV PERFORMANCE AND SOILING IN
CHILE

The plant focus of the present study is located in Chile, one of the

countries experiencing the most intense PV capacity growth world-

wide. Since 2012, the national PV capacity has gone from 3 MW to

>3 GW in September 2020,14,15 with more than 450 MW installed

every year since 2014. PV already produces more than 8% of total

electricity generation in the country.16 This PV expansion is being

pushed by the high solar resource and the favorable market condi-

tions17,18 that have led to levelized costs of electricity among the low-

est worldwide.19 However, the performance and the revenues of PV

systems in Chile can be severely affected by soiling. Annual soiling

losses were found to significantly vary within the country, with peaks

as high as 39% in the northern coastal area of the Atacama Desert.20

If not opportunely mitigated, soiling can substantially affect the PV

performance, lowering the profits and limiting the deployment of new

PV capacity.

Because of these conditions, soiling of Chilean PV systems has

started receiving some attention in the past years, and a recent review

has highlighted the need for additional studies on the impact of the

environmental and soiling conditions on PV in Chile.17 Several works

on this topic have been conducted in the capital city, Santiago, and

focused on the impact of soiling on different PV technologies.5,21,22 In

Santiago, the highest soiling deposition rates were found to take place

in the winter months due to the higher particle concentrations occur-

ring in this season.5 However, higher soiling rates do not directly

translate into higher soiling losses as these are also affected by rain-

falls, which are more frequent in winter.21 The same seasonal soiling

deposition rate trends were also reported for Santiago in a different

study,20 which was conducted in five additional locations across the

Atacama Desert. In that study, significant losses (>3%/year) were

found only for the two northernmost and driest investigated sites, in

addition to Santiago. A different investigation, also conducted in

northern Chile, reported transmittance losses higher than 50% for PV

glasses exposed for just 4 months.23 Another work compared the

performance and the soiling losses of two PV technologies in coastal

northern Chile.24 Power losses >9% were reported for a polycrystal-

line module installed in a different coastal area of the Atacama Desert

after 4 month of exposure.25

All these investigations have provided essential information on

the performance and the soiling of PV in a country as Chile. Despite

that, most of them focused on Santiago or in the northern part of the

country only. The PV system here investigated is at the center of a

400 km north–south transect, delimited approximately by the

longitudes 29.9�S and 33.5�S, in which no soiling investigation was

previously conducted, as shown in Figure 1 (more information on the

characteristics of the location in Section 3.1). For this reason, the pre-

sent study also provides useful data on the solar potential of a region

with high insulation in a country currently experiencing substantial PV

investments.

Some of the previous works also presented cleaning optimiza-

tion models.5,20,22 These are of value and provide important infor-

mation on the profits and costs of PV soiling mitigation in Chile.

However, they are all based on data collected from soiling measure-

ment devices or few-kW-scale PV systems. Therefore, they do not

take into account the potential nonuniform soiling distribution that

can affect larger PV systems and that is the main topic of the

present work.
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3 | MATERIALS AND METHODS

3.1 | Location

The data of this study are sourced from a 3.25-MW PV system

located in the Coquimbo Region, Central Chile, about 200 km north of

Santiago and 40 km west of the closest seashore, at 365 m of altitude.

The site is at the border between BSk (cold arid steppe) and Csb

(warm temperate summer dry) climate zones according to the

Köppen–Geiger classification.26 On average, this location receives a

radiation of 2400 kWh/m2/year at optimal tilt, 6% more than Santi-

ago and higher also than that of the northernmost coast of the Ata-

cama Desert.27 As shown in the top plot of Figure 2, the region is

characterized by frequent and intense precipitations in winter (June

to September) and longer dry spells in summer (October to March).

Over the last 30 years, it has experienced on average 261 mm of rain-

fall per year, more than 70% of which typically in between May and

August (data sourced from MERRA-2,28 events <1 mm/day are

excluded). On average, dry spells last less than 20 days in winter (April

to September), while they can be as long as 44 to 46 days in October

and November. The middle plot in Figure 2 shows the typical daily

wind speeds (left y axis), calculated as simple average of the daily

means in between 1980 and 2019, and the daily maximum wind

speed distribution (right y axis) over the same period. As it can be

seen, the average wind speeds are in between 2.5 and 3.5 m/s from

October to March and below this range during the remaining months

of the year. On the other hand, April to September is the period in

which the highest and most frequent wind gusts are registered.

3.2 | PV performance

The PV system consists of 508 strings of 320 W-rated polycrystalline

modules mounted facing north at 20� tilt. The analysis is conducted

on the hourly DC power data measured at the combiner boxes from

January 2017 to December 2019. Two hundred fifty-six time series

were provided, 252 of which reported the combined electrical output

of two strings (40 modules and 12.8 kW per time series) and four of

which reported the output of an individual string of 20 modules.

Global tilted irradiance and ambient temperature are also mea-

sured at the site through a pyranometer and a NTC thermistor,

respectively. The same measurements, taken on the east side of the

plant, are used for all the string pairs. The sensors are maintained

regularly and cleaned every week by the O&M team. This is the min-

imum cleaning frequency recommended by the IEC 61724-1 stan-

dard29 to maintain the highest irradiance measurement accuracy. It is

acknowledged that, within the week, soiling of the irradiance sensors

might occur in some cases. However, unfortunately, no method has

been proposed yet to evaluate the soiling of irradiance sensors and

to correct accordingly the measurement profile. So no action could

be taken in this regard, but future works should address this issue.

However, even if the soiling deposition on the irradiance sensors is

present, it is not expected to affect substantially the detection of

the nonuniform soiling distribution, which is the main focus of

this work.

The hourly wind speed and rainfall intensity data have been

instead sourced from MERRA-228 through the soda-pro web inter-

face.30 MERRA-2 data are originally available at a 0.625� � 0.5� spa-

tial resolution. So the four closest MERRA-2 data points were

processed through bilinear interpolation to generate the time series

from the investigated site.

The performance ratio of each string pair has been calculated as

the ratio of the measured to the expected power outputs. The latter

has been estimated from the irradiance by applying temperature,

spectral, and angular corrections available in pvlib-python.31 The tem-

perature correction was based on the methodology proposed by King

F IGURE 1 Map of Northern Chile with locations of the previous
studies on PV soiling.5,20–24 The previous works' markers are sized
depending on the number of studies conducted in each location. The

locations of two sites in Olivares et al.,23 labeled as “Northern
Desert,” could not be identified and have not been included

MICHELI ET AL. 213
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et al.32 The ASHRAE model was employed to estimate the incident

angle modifier.33,34 The spectral losses were calculated from the air

mass using referenced methodologies.35,36 All the parameters needed

for the corrections were set as those of a polycrystalline 72-cell glass-

cell-polymer module on the Sandia module database.

No inverter clipping has been detected. Data from October 6 to

November 15, 2017, have been discarded because of a shading issue

due to the development of the undergrowth (removed on November

14) affecting some of the strings. Outlier filters similar to those

employed by Theristis et al.37 were also applied: only hours with irra-

diance between 50 and 1300 W/m2 and performance ratio between

0.1 and 1.3 were considered. In addition, any hourly data point out-

side the two standard deviations, calculated from the whole time

series, was removed.37

F IGURE 2 Weather characteristics from 1980 to 2019 at the location of the study. Top plot: daily ambient temperatures in �C (orange
squared markers, left y axis), daily precipitation intensities (blue bars, right y axis) in mm/day, and monthly average length of the dry spells
(hatched green bars, right y axis) in number of days. Middle plot: average daily wind speeds (black squared markers, left y axis) in m/s and
distribution of the maximum daily wind speeds (red vertical bars, right y axis) also in m/s. Bottom plot: wind rose showing the frequency of winds
blowing from each direction. Original hourly data sourced from MERRA-2 database,28 through the soda-pro.org platform. Only precipitations of
intensity >1 mm/day have been considered. Wind speeds and directions refer to winds at 10 m above ground
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3.3 | Soiling extraction

Soiling has been quantified through the soiling ratio, a metric that

expresses the ratio of the electrical output of a PV device to the elec-

trical output that the same device would have in clean conditions.12 In

this work, the soiling ratio calculation was based on the DC power

data. Soiling losses were calculated as 1 � soiling ratio and expressed

in %. A soiling ratio of 1 corresponds to 0% losses, and its value

lowers (i.e., the losses raise) while soiling accumulates on the PV mod-

ules' surface.

A time series of daily soiling ratio values (“soiling profile”) was

extracted for each string pair from the PV performance ratios, previ-

ously calculated from the DC power data (Section 3.2). The methodol-

ogy employed to extract the soiling profiles, partially based on

previous works, was made of the following steps:

i. Daily performance values were calculated as the simple average

of the hourly data within 1 h of the solar noon. Only data with

global tilted irradiance >700 W/m2 were kept.38 These condi-

tions are stricter than those recommended by the IEC 61724-1

standard12 or employed in previous works39–41 but (i) take into

account the fact that the analysis is conducted in a high irradi-

ance region and (ii) are expected to minimize the noise in soiling

extraction.

ii. Any daily value on a day i outside of two standard deviations of

the mean of the values calculated from the data within i � 7 and

i + 7 was considered an outlier.42

iii. Any missing daily data point was filled using the Next Observa-

tion Carried Backward method. The 14-day window rolling

median was calculated from the performance ratio and normal-

ized to the 95th percentile value.43

iv. The effect of degradation was removed from the normalized per-

formance ratio profile. Each daily performance ratio was divided

by the degradation rate value, extracted through the year-

on-year decomposition function available on rdtools.44,45

v. The impact of artificial cleanings on the PV performance was

removed, and any natural cleaning was identified through the

analysis of positive shifts in the soiling ratio profiles.43 The meth-

odologies employed in this step are detailed in Section 3.4.

vi. Each period of at least 14 days within two natural cleanings was

fitted through a piecewise regression.42,46 If the change point

was found to occur within 7 days of one of the natural cleanings,

linear regression was employed instead. A flat profile was

modeled for deposition periods shorter than 14 days or with fits

of R2 < 0.7. The minimum number of days was set in agreement

with Deceglie et al.47 to avoid fitting extremely short periods,

which could have led to unrealistic soiling rates. The R2 threshold,

based on Kimber et al.,48 helped to prevent the extraction of

soiling rates from extremely noise or poorly fit data.

vii. The soiling profile was adjusted so that cleanings restored the

value of the daily soiling ratio to 1.0.5 Each data point of a soiling

period in between cleanings was therefore moved to set the first

daily value at 1.0.

Performance ratio profiles missing more than 30% of the soiling

data points (i.e., days) in total or missing more than 5% of data points

(i.e., days) consecutively were discarded. In addition, from the visual

inspection of all the time series, it was also found that an R2 of 0.83

and a mean absolute error (MAE) of 0.03 could successfully identify

acceptable soiling profiles when these were compared to the perfor-

mance ratio profiles. The valid soiling profiles with the highest and the

lowest R2 are shown in Figure S1 (“S” denotes that the figure is

reported in the Supporting Information). Figure S2 shows the valid

soiling profiles with the minimum and maximum MAEs. Examples of

the discarded soiling profiles are shown in Figure S3.

The filtering procedure left 142 valid string pairs out of the initial

256. Therefore, the sample here investigated represented the 55% of

the total PV site capacity. The profiles of the most and least soiled

valid string pairs are shown in Figure 3. It is acknowledged that the fil-

tering is stricter and the developed model is more complex than those

presented before.43,48 This is motivated by the fact that the data used

in this work represent the largest data pool used so far on a single

soiling study. This large number of inputs made untrustworthy to

manually or visually tune each time series independently (as done pre-

viously) and led to the necessity of developing a model to analyze the

data in the most systematic and robust way, at cost of neglecting a

number of time series. A map of the average normalized performance

of the various strings of the plant is shown in Figure S4.

It should be noted that some authors have used an exponential

function to model soiling accumulation7 or assumed that the soiling

accumulation would slow down or stop after a certain threshold.6

However, the present work makes use of linear soiling trends; soiling

is assumed to accumulate at fixed rates in between cleanings. This

approach is the same used in several previous works5,38,43,48 and was

chosen because of its simplicity (it did not require to set an arbitrary

soiling accumulation limit or threshold) and because widely accepted

and used in the literature.

3.4 | Cleanings: Removal, identification, and
modeling

In this section, the methodologies related to the modeling of natural

and artificial cleanings are described. First, the method employed to

remove the effect of artificial cleanings from the soiling profile is

described. Second, the procedure adopted to identify natural cleaning

events is detailed. Last, the methodology used to investigate the

effects of different cleaning schedules on the soiling loss profile is

reported.

Nine artificial cleaning events were performed by the O&M team

in between January 2017 and December 2019 on dates that were

provided to the authors. It should be noticed that there is no accepted

methodology in the literature to remove the effects of artificial

cleanings from a soiling profile. So a procedure similar to that

employed for different sites in previous works20,38,49 was established

and employed. The methodology is based on the procedure commonly

used to model the effect of cleanings on an unmitigated soiling
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profile.5,50 Indeed, cleanings are typically modeled to generate a posi-

tive shift on the soiling ratio that propagates until the following

cleaning date. So, in this case, all the data points following an artificial

cleaning and until the following natural cleaning were lowered by a

value equal to an offset, calculated as the difference in the average

soiling ratio between the first week after and the last week before the

cleaning was performed. The artificial cleaning was modeled not to

affect the magnitude of the daily variation between of consecutive

data points (i.e., the soiling rate). The methodology employed to iden-

tify the natural cleaning events is detailed in the following paragraphs.

Soiling extraction is typically performed by fitting data points in

between natural cleaning events. These can be identified through one

of two methodologies. The most common approach is based on the

assumption that any rainfall event above a certain threshold has a

cleaning effect on soiling. This method requires in input the rainfall

pattern and a minimum cleaning threshold value. Several thresholds

have been used or reported in literature, ranging from 1 mm/day40,51

to values ≥5 mm/day.4,52 In addition, a study also reported that rain-

falls of similar intensities had cleaning effect on one season but did

not affect soiling in another season.53 Something similar happens for

the given site: a 4.6-mm/day rainfall event on January 8, 2018, and a

3.8-mm/day rainfall event on December 4, 2018, did not have any

effect on soiling, whereas a 4.5-mm/day event on April 23, 2019,

completely washed off the dust from the modules. Therefore, the pos-

sibility of using rainfalls for cleaning identification in this work was

discarded. This decision made it possible to investigate the cause of

the natural cleanings, rather than assuming a priori rainfalls as domi-

nant cleaning agent.

The second common cleaning identification approach does not

require in input the rainfall pattern and detects the cleanings directly

from the positive shifts of the soiling ratio profile.43 Any positive shift

larger than a set threshold is identified as a cleaning. In the original

formulation proposed by Deceglie et al.,43 the threshold is set as P75

� 1.5 � (P75 � P25), where P75 and P25 are the 75th and 25th percen-

tiles of the absolute values of daily variations in performance ratio.

However, due to the noise in some of the soiling profiles, this algo-

rithm can occasionally label outliers as “cleaning events,” even if no

natural cleaning occurred. These events (here called “false cleaning”)
can be visually determined because the positive shift (i.e., the cleaning

effect) affects only one or at most a limited number of noisy data

points, after which the soiling profile returns to the previous level. It is

worth emphasizing that the cleaning identification process is

F IGURE 3 Valid extracted soiling profiles with the highest and the lowest average soiling ratio value (rs). Orange square markers: original
normalized performance ratios extracted from power data. Red cross markers: daily performance ratios after normalization and removal of
artificial cleanings (points iv and v of the procedure described in Section 3.3). Black line: extracted soiling ratio profile. Green vertical bars:
detected cleaning dates.43 Gray vertical bars: artificial cleaning dates. Blue bars: rainfall events in mm/day reported28 by MERRA-2
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conducted independently of the weather pattern and that the “false
cleanings” are not associated to a particular cleaning agent (e.g., a

cleaning is not label as “false” because caused by wind) but are rather

the effects of the noise in the data. The data gathered from PV plants'

performance are indeed subject to more noise than soiling stations,

which have been typically used in soiling studies. An example can be

seen in the left plot of Figure S5, where a “false cleaning” is detected
by the algorithm in the fall of 2018. However, the trend of the data

points after that detected cleaning suggests that the cleaning did not

actually occur, as, after it, the soiling ratio continues decreasing from

the same value as before. A visual analysis proved that “false
cleanings” were detected in many time series and that the detection

algorithm worked with different accuracies on different pairs of

strings, making their comparison unreliable. A similar issue was

reported previously,54 and it was addressed through a time series spe-

cific tuning of the threshold equation. However, due to the number of

time series investigated in this work, the time series specific calibra-

tion was discarded, because it would have required a different arbi-

trary choice for each time series, as no fixed threshold was found to

be accurate for all the time series.

The first and most significant improvement in cleaning detection

was found by removing short periods of high noise (February 24 to

March 11, 2017; May 7–19, 2017; April 8–11, 2018; April 21–25,

2019; November 2–10, 2019; and November 22–27, 2019) from all

the performance ratio profiles. In addition, it was decided to ignore

any cleaning identified through the original threshold equation43 that

did not cause a positive shift in the soiling ratio larger than 0.03

(Figure S5). This approach required to perform the soiling extraction

twice, once to remove the false cleanings and once to generate the

final soiling profile. Indeed, false cleaning identification had to be con-

ducted on the extracted soiling ratio profile to avoid the threshold to

be biased by noise and outliers, which can be particularly frequent

and severe in rainy days. This approach is therefore less computation-

ally efficient than the methods proposed before, but it was necessary

for a robust, reliable, and systematic analysis of the multiple time

series. In addition, it should be noted that this approach discarded

some of the cleanings in winter that had smaller effect on the soiling

profile. This was found to have only a limited effect on the soiling

extraction, also thanks to the adoption of a piecewise regression.

Indeed, piecewise regression makes it possible to distinguish the high

and the low soiling periods without the need for detecting intermedi-

ate smaller cleanings or changes in environmental conditions.42 In

addition, the 0.03 threshold was found to be particularly useful for

those time series in which false cleaning events were still detected in

the middle of the most soiling intense season. This approach is not

expected to be immediately valid for other studies but can provide a

baseline toward the development of more accurate, universally valid,

and self-calibrating methods for PV cleaning identification that should

be investigated in the future.

The O&M cleaning schedule optimization was conducted by

modeling various cleaning frequency scenarios and by comparing

their effectiveness, their costs, and the additional revenues they

generated. The optimal cleaning dates for each cleaning frequency

scenario (i.e., cleaning dates that minimize the energy soiling loss

given a number of cleanings, nc) were estimated using the model

described in previous works.38,49 The same cleaning dates were

modeled in each of the 3 years of data. Each modeled cleaning was

assumed to restore the soiling ratio to 1, and a fixed offset was

applied to all the following dates until the subsequent cleaning. The

cleanings were modeled not to affect the soiling rates but only to

have an effect on the soiling ratio. The costs and benefits of each

cleaning were estimated through the methodology described in the

next section.

3.5 | Economics and cleaning optimization

The most profitable cleaning frequency was selected by identifying

the number of cleanings that maximized the soiling mitigation profits.

These were calculated as the difference between the revenues (R) due

to the recovered energy and the cleaning costs (CC), as described by

Besson et al.5 The soiling mitigation revenues (R), over the investi-

gated period, were calculated as

R ncð Þ¼ p �0:95 �
XS

s¼1

XI

i¼1

Es,i � rs,i,nc� rs,i,0ð Þ, ð1Þ

where p is the electricity price ($0.16/kWh in Chile, as in Besson

et al.5) and Es,i and rs,i,nc are the daily soiling-free energy yield and the

daily soiling ratio on the day i, for the sth string and for a nc number of

cleanings. rs,i,0 is the daily soiling ratio if no mitigation is performed.

S is the number of strings for which a valid soiling loss profile was

extracted. I is the total number of days of data collection. Only DC

power data were provided; so a fixed typical 0.95 inverter efficiency

was considered to convert these into AC values. The soiling-free DC

energy yield was obtained as

Es,i ¼
P24

h¼0Wh,s

rs,i,a
, ð2Þ

where Wh are the DC hourly power data and rs,i,a is the “actual” daily

soiling ratio on the day i, for the sth string, calculated taking into

account (i.e., not removing the effects of) the nine artificial cleanings.

Missing data in October and November 2017 were replaced with the

data from the same period of 2018. An example of the extracted per-

formance and energy data is shown in Figure S6.

The total cost for each soiling mitigation scenario with an nc num-

ber of cleanings was calculated as

CC ncð Þ¼
XS

s¼1

nc �Cw �ny , ð3Þ

where Cw is the specific cleaning cost, per unit of power, and ny is the

total number of years. Cw was set equal to the minimum value ($1.9/

kW/cleaning) found by a survey conducted for rooftop PV systems of

100 kW in 2016.55 For the PV modules installed at the investigated
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site, this corresponded to �$0.3/m2/cleaning. A sensitivity analysis

on the effect of different Cw values and of different electricity prices

on the results is presented in Section 5.3.

The optimization was conducted by modeling a number of

cleanings equal to the investigated cleaning frequency on the soiling

profile of each string pair. Cleanings were modeled to restore the

soiling ratio to 1 and to have no effect on same soiling rate (i.e., the

slope of the soiling ratio profile). This means that a positive offset was

applied to all the days after the cleaning until the following cleaning

event. The revenues of each profile were calculated as for equation

(1) and compared with the costs of equation (3) to calculate the

profits.

Six cleaning frequency scenarios were considered, with a yearly

number of cleanings going from 0 to 5. Differently from previous

studies,5,20 cleanings were not modeled at fixed intervals. For each

cleaning frequency scenario, the soiling profile of each string pair was

modeled. At each iteration, the same cleaning dates were modeled for

all the years. For each cleaning frequency, the combination of cleaning

dates returning the highest profits was selected as the optimal

cleaning schedule. Cleaning dates were modeled at a 14-day step.

4 | SOILING LOSSES

4.1 | Soiling distribution

All the valid soiling profiles generated in this analysis are plotted in

Figure 4. The average soiling ratio is 0.919, and the standard deviation

is 0.013. The distribution of average losses is lightly skewed left

(skewness: �0.6): 48% if the string pair experiences losses in the

range from 6.5% to 8.0%. About 8.5% of the string pairs show losses

>10%, up to a maximum value of 11.5%. There are a 6.0% difference

and a factor of 2.1� between the losses of the string pairs experienc-

ing the most and the least soiling (right plot of Figure 4).

The left plot in Figure 4 also shows that the strings have in most

cases the same natural cleaning dates. It is worth noticing that the

three main natural cleaning events occur at the end of each summer

(May 2017, June 2018, and April 2019) in correspondence with a rain-

fall. Another rain-based cleaning event is found in May 2019 for

>60% of the string pairs. Additional smaller cleanings, reported by at

least five strings pairs, were detected in May 2017, May 2019, and

September 2019. These results and the profiles plotted in Figure 4

suggest that the cause of the dissimilar soiling ratios among the string

pairs is mainly due to the different deposition rates in summer. During

the winter months, indeed, the soiling accumulation is limited in all

the strings, even because probably soiling is periodically washed off

by undetected natural cleaning events. On the other hand, during the

summer months (December to February), the soiling rates of the vari-

ous string pairs can vary more significantly, with factors of 2� to 3�
in between the maximum and minimum rates.

By knowing the design of the PV plant, it is possible to retrieve

and map the soiling distribution depending on the position of each

string, estimating also the average soiling ratio of missing strings

through spatial interpolation.39 Figure 5 shows that most of the losses

occur on the northernmost and southernmost strings. However, it is

only possible to speculate on the causes of this loss distribution, as

the lack of locally measured environmental parameters does not make

it possible to provide more specific and definitive answers. All the

strings located in the first six rows from the south show average

soiling ratios <0.9. The satellite imagery of the site shows that these

strings are the nearest to the main road and are located 30 to 50 m

from an unpaved lay-by where heavy vehicles operate. Along with the

F IGURE 4 Left: soiling profiles of all the string pairs with valid soiling profile (orange lines). The red darker line shows the median soiling
profile. Rainfalls are represented by vertical blue lines. Right: distribution of the average soiling ratios. The red vertical continuous line shows the
median, the darker dotted line marks the mean, and the red area delimits the standard deviation. The time series with the highest and the lowest
soiling losses are shown in Figure 3
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closer position to the soiling sources, these strings are also possibly

acting themselves, at least partially, as barriers to the transportation

of dust over the central part of the PV plant.57 However, unfortu-

nately, this hypothesis cannot be confirmed at this time, given also

the fact that soiling of some strings had to be interpolated, and should

be further investigated in future works. In addition, the entrance to

the site and the service buildings are located on the north side, which

potentially cause the cluster of high losses registered in that

section of the PV plant. Last, the service road runs along the east side

of the plant, connecting the main road and the entrance, and is poten-

tially responsible for the soiling occurring on the easternmost strings.

For these reasons, it is reasonable to think that in this particular case,

the soling distribution could be due to the surrounding areas of the

PV plants. However, the impact of other environmental parameters,

such as wind speed and direction, should be considered in future

works in order to achieve more solid result for both this and additional

power plants.

4.2 | Soiling seasonality

From the analysis of the seasonality of the losses (Figure 6), it is possi-

ble to split each year into two consistently alternating periods: a high

loss season in summer, peaking from February to April (median soiling

ratio <0.87), and a limited loss period in winter (June to September,

median soiling ratio >0.97). Soiling starts accumulating in August, at

the end of the rainiest months (Figure 2), and the high loss season ter-

minates with the first intense cleaning event, which generally takes

place in between April and May.

As also previously shown in Figure 4, one of the causes for the

seasonal soiling is the yearly pattern of rain. Rain events are frequent

in winter (April to September), keeping the PV modules clean in this

season, similarly to other locations.21 These are also the months in

which high wind velocities are more frequent (Figure 2), also poten-

tially contributing keeping the PV modules clean.58 On the other hand,

soiling builds up during the long dry summer until the first significant

rain, typically occurring in between April and May.

Soiling losses are the results of the combination of cleaning

events and deposition rates.50 While rainfalls are the dominant

cleaning events in most sites, deposition rates (i.e., soiling rates) can

vary depending on a number of factors.59 The analysis of the soiling

rate distribution makes it possible to understand if this seasonal vari-

ability of soiling shown in Figure 6 is only the result of the natural

cleanings' pattern or if it is also driven by other conditions. The bars in

Figure 7 show the distribution of monthly mean soiling rates for all

the investigated strings. These are obtained as weighted mean of all

the soiling rates in a month, weighted according to the number of

days they lasted.50 The mean soiling rate varies from �0.03%/day in

winter (July and August) to values <�0.10%/day in between January

and May.

Differently from the results shown for other sites in Chile, and

especially in Santiago, the investigated PV system experiences more

severe soiling rates in summer than in winter. The difference can be

related with the seasonal behavior of PM2.5 and PM10. These indexes

quantify the mass of suspended particles of diameter <2.5 and

<10 μm, respectively, in a cubic meter of air and have been found to

be good predictors of soiling.40,41 In Santiago, both the PM2.5 and

F IGURE 5 Geographical distribution of the strings and of the
relative soiling losses. Each marker represents a string of 20 modules
and is color coded depending on the severity of the soiling losses

(dark green: 6.5%, dark red: 12.5%). Strings of the same pair have the
same losses, so their markers have the same color. The soiling ratio of
strings with nonvalid soiling profiles was estimated using linear spatial
interpolation method available in the Python's SciPy package.56 These
strings are marked with a white dot. The same plot without spatial
interpolation is shown in Figure S7
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PM10 peak in winter5,20 because of the drop in wind speed experi-

enced in the fall and winter seasons.61 For the site investigated in this

work, PM2.5 was extracted62 from MERRA-2 and PM10 from ground

measurements, in both cases for the years 2017 to 2019. The PM2.5

concentration, calculated using the equation reported in Provençal

et al.,63 reaches the minimum in between June and August (<8 μg/m3)

and peaks from November to March (>9 μg/m3), with a behavior simi-

lar to that found for the soiling rate. When the monthly average PM2.5

values and the monthly mean soiling rates are compared, an R2 of

0.52 is found (Figure S8). The daily PM10 concentrations, recorded by

one monitor located 50 km east of the site,60 confirm this trend, with

minimum values in between June and October (<18 μg/m3) and

F IGURE 6 Three-year soiling
profiles plotted over a 12-month
period. Upper plot: soiling
profiles. In red median of the
soiling profiles. Lower plot:
boxplots of the average daily
soiling ratio in each month. The
orange horizontal lines mark the
medians, whereas the top and

bottom limits of each box are the
third and first quartile of the
distribution (Q3 and Q1,
respectively). The vertical lines in
each boxplot are limited either by
the lower or the upper whiskers
(i.e., minimum and maximum
values that are not outliers). The
circles identify outliers,
determined because outside of
the Q1 � 1.5 * IQR to Q3
+ 1.5 * IQR range, where IQR is
calculated as Q3 � Q1

F IGURE 7 Monthly mean soiling rate distribution (left) and average daily PM2.5 and PM10 concentrations (right). The monthly mean soiling
rates are calculated using a referenced methodology proposed in a previous work50 and considering only soiling rates <0%/day. The PM2.5 data
are calculated as mean of the 24-h averages downloaded from MERRA-2.28 The PM10 data are calculated as mean of the daily averages
downloaded from the SINCA database of the Chilean Ministry of the Environment60
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maximum values in between January and April (>27 μg/m3). In this

case, the correlation between PM10 and soiling rates has an R2 of 0.88

(Figure S8). Therefore, the PM2.5 and PM10 profiles justify the sea-

sonal soiling rates trends at the investigated site and at the same time

explain the time difference compared to the losses previously

reported for other locations.

Despite the high correlations between soiling rates and particle

matter, it is worth noticing that the soiling extraction method used in

F IGURE 8 Left: revenues, costs, and profits in an optimal one-cleaning scenario depending on the cleaning date for the 2-year period in
between July 2017 and June 2019. Right: histogram showing the profits made by each string pair on the most profitable cleaning date (January
13). The soiling and the energy profiles of the strings retuning the highest and the lowest profits are shown in Figure S9

F IGURE 9 Left: profits due to a two-cleaning strategy, compared to a no-cleaning scenario, depending on the cleaning dates for the 2-year
period in between July 2017 and June 2019. The cleaning costs are already subtracted from the profits. No color is shown if costs are larger than
revenues. The black lines mark the maximum profits achievable through a single cleaning strategy (Figure 8). Right: histogram showing the profits
made by each string pair on the optimal cleaning dates (November 18 and February 10). The soiling and the energy profiles of the strings retuning
the highest and the lowest profits are shown in Figure S10
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this work (Sections 3.3 and 3.4) differs from that used in previous ana-

lyses conducted in Chile.5,20 The minimum number of 14 days and the

R2 requirements employed in this work lowered the number of soiling

rates detected but were necessary to extract robust soiling loss pro-

files from the large number of strings. Similarly, the 0.03 threshold on

cleaning reduced the number of cleanings and affected particularly

minor cleaning events occurring in winter. In addition, previous works,

conducted in different environments outside of Chile,64–66 have

highlighted that particle matter concentration is not necessarily the

dominant factor controlling dust deposition. Further investigations

should be therefore conducted in future to correlate the soiling rate

values and a larger number of parameters.

5 | CLEANING COSTS AND PROFITS

5.1 | Cleaning frequency optimization

An analysis of the potential cleaning schedules is presented in this

section. In order to get the most accurate results, cleaning optimiza-

tion has to be performed on time series that start and end during the

season with the least soiling losses. This way, the effect of each

cleaning made on soiling intense periods can be prorogated until the

following natural cleaning event and is not interrupted by the end of

the time series. For the investigated location, as mentioned earlier,

the most soiling intense period goes from October to May. For this

reason, in this section, only the 2-year period going from July 1, 2017,

to June 30, 2019, is considered, so that two complete soiling seasons

(July to June) are analyzed. Limited soiling losses were recorded for all

the valid strings (average ≤1%) on July 1 and June 30, the dates limit-

ing this period.

In addition, in this section, the PV system is assumed to be made

of the strings with valid soiling profiles only. Spatial interpolation has

been used in the past to estimate the average soiling losses from

nearby PV systems,39 but no attempt has been made yet to model the

daily soiling profile using spatial interpolation. The PV capacity of the

valid strings sums up to 1.8 MW, which means that each cleaning

costs >$3400.

By taking into account the soiling and the power output of all the

valid strings, it is found that the most profitable day to clean, if only a

cleaning per year is performed, falls in the week of January 13

(Figure 8). Cleaning is not profitable (revenues < cleaning costs) from

mid-April to July. It should be noted that, because of the uneven

soiling distribution shown in Figure 8, not all the strings return the

same profits from the cleaning (right plot of Figure 8), with a factor up

to 3� between most and less profitable strings (Figure S9).

If a two-cleaning scenario is chosen instead, the highest profits

are found if the first cleaning is conducted in November and the sec-

ond in February (left of Figure 9). In general, the soiling mitigation is

the most profitable if at least one cleaning is conducted in between

September and May, with the best results between January and

March. A yearly two-cleaning strategy is more profitable than a one-

cleaning approach if at least one of the cleanings is made in this

3-month period and the second one in between August and

December. As also seen in Figure 9, cleanings return the minimum

profits (if any) when at least one of them is conducted in between

May and July.

The best results for a two-cleaning approach are found if the

modules are cleaned on the weeks of November 18 and of February

10. This would increase the profits of soiling mitigation by 28% com-

pared to a single cleaning approach. Similar to the one-cleaning sce-

nario, not all the strings return the same profits when compared to a

no-cleaning scenario (right of Figure 9).

Soiling mitigation profits are even higher if three cleanings are

conducted per year (Figure 10). The best cleaning dates for a three-

cleaning scenario fall in the weeks of November 4, January 13, and

March 10 and return a maximum profit of $25.5/kW over the 2-year

period. This is 34% higher than a single cleaning scenario. The soiling

and the energy profiles of the strings returning the highest and the

lowest profits for a three-cleaning scenario are shown in Figure S11.

The soiling mitigation profits start to lower if more than three

cleanings are performed. The drop in profits is limited to 4% to 5% if

two or four cleanings are done; otherwise, it is more significant

(profits reduced by >10% compared to optimal schedule). In all the

modeled cleaning frequency scenarios (up to five cleanings per year),

profits are higher if cleanings are done, compared to a scenario in

F IGURE 10 Total profits per cleaning
strategy over the investigated 2-year period. The
soiling and the energy profiles of the strings
retuning the highest and the lowest profits for a
three-cleaning scenario are shown in Figure S11
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which no soiling mitigation is put in place. In addition, in all cases, the

optimal artificial cleaning dates are in between September and March,

the period in which most of the losses typically occur (Figure 4). The

three cleanings per year conducted by the local O&M team were

found to generate $24.3/MW, about 4% below the maximum achiev-

able with an optimal three-cleaning schedule and in line with the

profits returned by the best two-cleaning schedule.

It should be noted that the difference between the profits of an

optimal three-cleaning strategy and those of optimal two- or four-

cleaning strategies are minimal. Because of this, and because of the

limited number of years available, it is not possible to draw any rec-

ommendation for the future years. Indeed, soiling can vary from year

to year depending on (i) the interannual variability of the parameters

influencing its rates of deposition and removal and (ii) the occurrence

and the frequency of exceptional events, such as dust storms.67 A

larger number of years are generally needed to evaluate the seasonal-

ity of rainfalls and other weather variable responsible for soiling,50

and more studies should be conducted, in future, on the advanced

prediction of the optimal cleaning schedule.68

5.2 | String-optimized cleaning

As shown in Figures 8 and 9, given the same number of cleanings, not

all the string pairs return the same profits, with factors of 3� between

the highest and the lowest profit of each string. The same occurs for a

frequency of three cleanings per year. This means that the site-wise

most profitable cleaning frequency is not necessarily the most profit-

able for each individual string. The profits of each string in the various

cleaning frequency scenarios can be mapped, as shown in Figure 11

for a three-cleaning approach, using the same methodology employed

in Figure 5.

The soiling mitigation profit distribution shown in Figure 11 sug-

gests that ideally it can be more profitable to clean only selected

strings rather than the full PV system. At the given conditions,

though, despite the soiling nonuniformity, it is found that only a lim-

ited number of the string pairs (4% of the total) would be more prof-

itable in a two-cleaning rather than in a three-cleaning scenario.

Because of this, a string-optimized cleaning schedule would improve

the profits of soiling mitigation by less than 1% only. Despite that,

this approach might become more beneficial in future as utility-scale

PV systems get larger and therefore the effect of soiling non-

uniformity is more pronounced. Indeed, the emissions of soiling

sources located nearby a PV plants will more likely affect only few

rows or strings of a large PV system rather than a whole PV plant. In

smaller PV systems indeed, soiling is required to travel shorter dis-

tances to cover the entire PV surface and the wind patterns (and

therefore the dust transportation) can be expected to be less

impacted by the modules.

At the present stage, the results found for the investigated are

difficult to generalize, as the soiling mechanisms will change with the

PV system design, the tracking design, the distribution of soiling

sources, and the wind pattern. So the costs and revenues of a string-

optimized cleaning should be estimated for each site as they depend

on the location, on the severity of soiling, and on its distribution. In

addition, it should be noted that the economic impact of nonuniform

soiling and mitigation would change depending also on the economic

F IGURE 11 String pair specific soiling mitigation profits in a
three-cleaning scenario. Each marker represents a string of
20 modules and is color coded depending on the magnitude of the
profits (dark red: $53.9/kW, dark green: $13.8/kW). The profits of
strings with nonvalid soiling profiles were estimated using linear
spatial interpolation method available in the Python's SciPy
package.57 These strings are marked with a white dot
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conditions, such as electricity price and cleaning costs, which are

indeed discussed in the next section.

5.3 | Effect of cleaning cost and electricity Price

So far, a cost of $1.9/kW per cleaning was set. This is the minimum

price offered by the different cleaning providers contacted by the

authors of the report on the costs of PV cleaning in Chile.55 In that

work, the range of cleaning prices found for 100-kW rooftop PV sys-

tems was $1.9 to $87.1/kW. In addition, previous works took into

account cleaning costs ranging from $1 to $13/kW.5,20 So, given the

variety of values used in previous references and considering that the

cleaning cost of utility-scale systems can differ from that of rooftop

systems, the analysis presented earlier was repeated. In this case, the

cost of cleaning was varied from $1 to $90/kW, considering yearly

zero- to three-cleaning scenarios.

The results of the analysis are shown in Figure 12. As expected,

the optimal number of cleanings and the total soiling mitigation profits

decreases as the cleaning cost raises. In particular, at the given condi-

tions, soiling mitigation is no longer profitable if cleaning costs are

≥$12/kW. In addition, multiple yearly cleanings are less profitable

than a single cleaning when the costs are >$5/kW and become uneco-

nomical when costs are >$8/kW per cleaning.

On the other hand, if the revenues and costs of soiling mitigation

on the different string pairs are analyzed in each cleaning frequency

scenario (right plot of Figure 12), it is found that soiling mitigation is

no longer economically viable for most of strings for cleaning costs

≥$12/kW. However, soiling mitigation is still profitable for some

strings for cleaning costs up to $18/kW. On the other hand, at least

three cleanings per year are recommended for all the strings if

cleanings cost ≤$1/kW.

At the given site, string specific cleanings do not become signifi-

cantly profitable (raise in profits ≥1%) until the cleaning costs have

raised up to $6/kW. Cleaning only economically worth strings can

raise the soiling mitigation profits by as much as 18% for a cost of

$10/kW. These values are within the $5 to $13/kW cleaning cost

range considered in Cordero et al.,20 but above the $1 to $4/kW

range considered by other studies,5,22 all conducted in Chile in

between 2017 and 2018. Above $10/kW, cleaning some strings is the

only economically worth approach, as cleaning the full PV site costs

more than the revenues made with the recovered energy.

In addition to the cleaning costs, it should be considered that

additional parameters can affect the profitability of soiling

F IGURE 12 Left: soiling mitigation profits for different cleaning frequencies and different cleaning costs. Only combinations that lead to
profits >0 are shown. Right: number of strings in which each cleaning frequency is the most profitable depending on the cost per cleaning.
Analysis conducted by varying the cleaning costs of $1 and $2/kW and multiples up to a maximum of $90/kW. A maximum of three cleanings per
year has been modeled
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mitigation.38,49 One of these is the electricity price: Higher prices

favor soiling mitigation as they increase the revenues made per

cleaning. Therefore, the cleaning frequency has to be adjusted

according also to the electricity price, whose values can even vary

with time. So a sensitivity analysis is here repeated taking into

account electricity prices ranging from $0.20/kWh to as low as

$0.02/kWh (Figure 13). As expected, the profits in soiling mitigation

and the number of recommended cleanings increase with the electric-

ity price. At the cleaning costs of $1.9/kW, no more than one cleaning

per year is recommended for electricity prices ≤€0.06/kWh, and miti-

gation becomes unprofitable for electricity prices <€0.04/kWh. How-

ever, these results also change depending on the cleaning costs:

Lower cleaning costs would make more frequent cleanings potentially

more profitable, even for lower electricity prices (and vice versa).

6 | CONCLUSIONS

In the present study, the soiling losses occurred on a 3.25-MW PV

system deployed in Chile have been investigated through the imple-

mentation of a robust soiling extraction methodology. The study

covers a 3-year period from 2017 to the end of 2019 and considers

142 DC power time series measured from the 508 strings of the PV

plant.

The paper investigates the effect of nonuniform soiling loss distri-

bution. While all the strings are subject to the same qualitative soiling

trends, with summer being the most soiling intense period due to

infrequent rainfalls and severe soiling deposition rates, significant dif-

ferences in the absolute values of the soiling losses are found among

the strings of the sites. In particular, the highest soiling losses are

experienced by the strings closest to the main trafficked road and to

an unpaved area where heavy vehicles operate. Losses are found to

be twice as high in these strings than in those at the center of the

plant. The nonuniformity is mainly driven by different soiling

deposition rates, with a median factor of 2� to 3� between the

highest and the lowest soiling rates occurring in summer.

The investigation also shows the optimal mitigation strategies for

various electricity prices and cleaning costs, with three recommended

cleanings per year at a cleaning cost of $1.9/kW and at an electricity

price of $0.16/kWh. A drop in profits of �4% is estimated if two or

four cleanings per year are done compared to the optimal schedule. In

all cases, the uneven distribution of soiling is also found to affect the

cleaning optimization, as ratios of 3� are found between the maxi-

mum and the minimum profits made by cleaning at the same time the

most and least soiled strings of the PV system. For this reason, the

possibility of cleaning only economically worth strings instead of the

full PV system is discussed.

Soiling nonuniformity is expected to become more important with

the increase in size of the PV systems, as the effects of soiling point

sources might become more localized and selected strings cleanings

might become more feasible. This work represents a first step toward

the understanding of this phenomenon. Additional data from more

sites will have to be analyzed and shared to make it possible to

develop a broadly applicable model. The results indicate that more

studies should be conducted on the causes, the economics, and the

mitigation of nonuniform soiling. In addition to the energy profiles,

also locally measured environmental parameters should be analyzed

to improve the understanding and the modeling of this phenomenon.

Furthermore, the present work discusses the challenges encoun-

tered in the extraction of soiling from a large number of PV perfor-

mance time series, even if measured within the same site. Making use

of PV plant data rather than soiling sensor's data widens the number

of data sources potentially available but, at the same time, increases

the complexity of the analysis. For this reason, future works should

address some of the questions that are still open in soiling modeling

and that were raised in this work (i.e., the identification of natural

cleanings, the potential soiling of the irradiance sensors, and the non-

linearity of the soiling rates).

F IGURE 13 Soiling
mitigation profits for various
cleaning frequencies, electricity
prices, and cleaning costs. Each
line represents a different
cleaning cost scenario. The
number of yearly cleanings
recommended for each
combination of electricity price

and cleaning cost (i.e., the
cleaning frequency returning the
maximum profits) can be
identified through the shape of
the markers. A maximum of three
cleanings per year has been
modeled
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